

High-Performance Computing
(Custom)

Abstract:
The goal of this course is to explore Modern Computer Hardware in explicit detail. Modern
computer hardware is a very broad subject. For a more ​incisive​ coverage, the course focuses
on “server-class” X86 architecture-based systems. The aspects of the exploration are:

1. The underlying concept of the hardware. (for e.g. CPU)
2. How the software interfaces with it. (for e.g. How does the OS interface with the CPU)
3. Tools used to measure the effect.

If the hardware is understood in the right manner, then it can be included in the design phase of
application development. This impacts the performance (latency and throughput) greatly.

Brief Table of contents
1. ​Machine-Level Representation of Programs

(This section shows how the program representation and its use of ​architectural registers​ of the
system. Tools like ftrace can be used to verify consolidate the understanding.)

2. Introduction to Micro-Architectures
(This section establishes the core concepts of the course. Focuses on the internals of a

microprocessor core, especially the flow of instructions and code. This will be the most involving and
eventually the most satisfying section. Post this section, ​one will be able to visualize program execution on a
CPU quite clearly​.)

3. Optimizing Code for Performance
(Microoptimizing Code for Performance, based on Section-2. This is specifically to verify the

theories and assumptions in Section-2. For e.g. ​utilization of one’s knowledge of CPU pipeline and
superscalar architecture to gain performance.​)

4. Storage
(Solid idea of RAM, Cache, and Disk. More importantly, exploit the cache with cache-aware data

structures and hide the CPU-memory GAP. Similarly, the OS page cache to DISK read/write gap.)

5. Prefetchers
(Prefetchers can optimize the memory reads if the read patterns can be understood.)

6. Virtual Memory
(Virtual memory has a lot of uses but here we explore the optimizations done for disk reads and

writes using OS page cache.)

7. MicroProcessor Components
(Linux interface to CPU and how can we use it to improve performance(​Latency and throughput​).

Understanding the CPU driver in Linux. Understanding the process of ​OS interfacing with the CPU.​)

8. Microprocessor Performance and energy

(This is the practical part of section-7. Power and performance(​Latency and throughput​) are
interrelated. ​This section explores the trade-off with examples​.)

9. Multicore architectures
(Multiprocessor systems and the effects of ​cache coherency​. Multithreaded programming requires

the idea of shared data in the presence of multicore systems.)
10. Distributed Computing

(In this section we change the approach a bit. We take an ​open-source, high
performance(Ultra-Low-Latency) messaging framework​ and dissect it. We see an industry-standard
implementation of the majority of the concepts below, including queuing theory, event-based architecture,
etc. On one hand, we explore the adaptation of the framework on Solarflare like hardware, and on the other
hand, we explore making the framework reactive.)
11. Tools

Table of contents

1. ​Machine-Level Representation of Programs
(This section shows how the program representation and its use of architectural registers of the

system. Tools like ftrace can be used to verify consolidate the understanding.)
Program Encodings
Data Formats
Accessing Information
Arithmetic and Logical Operations
Control
Procedures
Array Allocation and Access
Heterogeneous Data Structures
Combining Control and Data in Machine-Level Programs
Floating-Point Code
Tool:​ftrace to trace program flow

2. Introduction to Micro-Architectures

(This section establishes the core concepts of the course. Focuses on the internals of a
microprocessor core, especially the flow of instructions and code. This will be the most involving and
eventually the most satisfying section. Post this section, one will be able to visualize program execution on a
CPU quite clearly.)

Von Neumann architectures
Modern processors

Instruction Set Architecture
Assembly View
Layers of Abstraction
CISC vs RISC

Hardware Structure

Hardware Stages
PipeLines

Real World Pipelines
Computational Example
3-Way Pipeline
Operating a Pipeline
Non Uniform Delays
Register Overhead
Data Dependencies
Data Hazards
Data Dependencies in Processors
Pipeline Demonstration
Nops
Stalling for Data Dependency
Stall Conditions
Detecting Stall Conditions
What Happens When Stalling?
Data Forwarding

 Data Forwarding Example
Forwarding Priority
Limitation of Priority
Avoiding Load/Use Hazard
Detecting Load/Use Hazard
Control of Load/Use Hazard
Modern CPU Design
Instruction Control
Execution units

Superscalar Units
Superscalar Execution
In-Order Superscalar Processor Example
Superscalar Performance with Dependencies
Superscalar Execution Tradeoffs

Branch Prediction
The Branch Problem
Importance of The Branch Problem
Branch Prediction
Branch Prediction: Guess the Next Instruction to Fetch
Misprediction Penalty
Simplest: Always Guess NextPC = PC + 4
Pipeline Flush on a Misprediction
Performance Analysis
Reducing Branch Misprediction Penalty
Two-Level Prediction

Global Branch Correlation
Hybrid Branch Predictors

Case Study
Sandy Bridge
Haswell

Tools: Perf​ for event based hardware profiling and an even more fingrained tool
(​overseer​) that can be integrated into the application.

3. Optimizing Code for Performance

(Microoptimizing Code for Performance, based on Section-2. This is specifically to verify the
theories and assumptions in Section-2. For e.g. utilization of one’s knowledge of CPU pipeline and
superscalar architecture to gain performance.)

Optimization Realities
Optimizing Compilers
Limitations of Optimizing Compilers
Optimization Blockers

Memory Aliasing
Procedure Calls
Cycles Per Element (CPE)

Optimization examples
Removing loop inefficiency
Procedure Calls
Lower Case Conversion Performance
Convert Loop To Goto Form
Understanding Modern CPU:Haswell
Loop Unrolling
Going Superscalar
Re-association
SSE and Friends
Limiting Factors

Branch Prediction
RegisterSpilling

4. Storage

(Solid idea of RAM, Cache, and Disk. More importantly, exploit the cache with cache-aware data
structures and hide the CPU-memory GAP. Similarly, the OS page cache to DISK read/write gap.)

(This section is to understand "CPU Memory Gap". This can be plugged with cache.)
Memory hierarchies

RAM
SRAM vs DRAM
Non Volatile Memory
Traditional Bus Structure Connecting CPU and Memory
Memory Read Transaction

Memory Write Transaction
CPU Memory Gap

Locality to the Rescue!
Qualitative Estimates of Locality
Memory Hierarchies
Example Memory Hierarchy

Conventional DRAM Organization
Reading DRAM Supercell
Memory Modules
Enhanced DRAMs
Storage Trends
Clock Rates

Caches
General Cache Concepts
Types of Cache Misses
Examples of Caching in the Mem. Hierarchy
General Cache Organization
Cache Reads
Direct Mapped Cache
Direct-Mapped Cache Simulation
E-way Set Associative Cache
What about writes?
Intel Core i7 Cache Hierarchy
Cache Performance Metrics
Writing Cache Friendly Code
The Memory Mountain
Memory Mountain Test
Matrix Multiplication Example
Miss Rate Analysis for Matrix Multiply
Core i7 Matrix Multiply Performance
Layout of C Arrays in Memory (review)
Cache Miss Analysis
Blocked Matrix Multiplication

Disk
What’s Inside A Disk Drive?
Disk Geometry
Disk Geometry (Muliple-Platter View)
Disk Capacity
Recording zones

Tools:
Perf hardware profiling​ to measure various cache/memory/disk metrics. This is

done to check if a particular design is taking effect.
EBPF​ based customized tools can be built to show the impact of the above.

5. Prefetchers

(Prefetchers can optimize the memory reads if the read patterns can be understood.)
Tolerating Memory Latency

Caching
Prefetching
Multithreading
Out-Of-Order Execution

Prefetching and Correctness
How a HW Prefetcher Fits in the Memory System
Prefetching: The Four Questions
Software Prefetching
X86 PREFETCH Instruction
Next-Line Prefetchers
Stride Prefetchers
Instruction Based Stride Prefetching
Prefetcher Performance
Tool: Same as section-4 but exact metrics can differ.

6. Virtual Memory

(Virtual memory has a lot of uses but here we explore the optimizations done for disk reads and
writes using OS page cache.)

A System Using Physical Addressing
Address Spaces
Why Virtual Memory (VM)?
VM as a Tool for Caching
DRAM Cache Organization
Enabling Data Structure: Page Table
Page Hit
Page Fault
Handling Page Fault
Allocating Pages
Locality to the Rescue Again!
VM as a Tool for Memory Management
Simplifying Linking and Loading
VM as a Tool for Memory Protection
VM Address Translation
Address Translation: Page Hit
Address Translation: Page Fault
Integrating VM and Cache
Speeding up Translation with a TLB
Accessing the TLB

TLB Hit
TLB Miss
Programmers View of Virtual Memory
System's View of Virtual Memory
Tool: Same as section-4 but exact metrics can differ.

7. MicroProcessor Components

(Linux interface to CPU and how can we use it to improve performance(Latency and throughput).
Understanding the CPU driver in Linux. Understanding the process of OS interfacing with the CPU.)

Core
Sandy Bridge Pipeline:Frontend(Instruction load, decode, cache)
Sandy Bridge Pipeline:Execution
Sandy Bridge Pipeline:Backend (Data load and Store)
Haswell Pipeline

 Uncore
L3 Cache
Integrated Graphics
Integrated memory controller
QuickPath Interconnect

Linux Inteface to CPUIDLE
CPUIDLE subsystem
CPUIDLE subsystem:Driver load
CPUIDLE subsystem:Call the Driver
CPUIDLE subsystem:Governor
CPUIDLE subsystem:Gathering and undertanding latency data

8. Microprocessor Performance and energy

(This is the practical part of section-7. Power and performance(Latency and throughput) are
interrelated. This section explores the trade-off with examples.)

Power
Power:Turn things off
Power:c-states
Power:Tuned
Power:Tuned:c-states requests
Power:Tuned:Hardware State Residency
Power:Tuned:Influx:Grafana:c-states
Power:Tuned:Measuring Latency
Power:Tuned:Hardware Latency
Power:Tuned:Wakeup Latency
Power:Tuned:Influx:Grafana:latency
Power:PMQOS
Power:Turn things down

Power:Turn things down:P-states:Hardware Latency
Core and Uncore:Uncore

Core and Uncore:Uncore:montioring and Tuning
Core and Uncore:Uncore:montioring and Tuning:Hardware Latency
Core and Uncore:Uncore:montioring and Tuning:Wakeup Latency
Core and Uncore:Uncore:montioring and Tuning:Application Latency

Tools: The primary tool here is ​ftrace​ but it majorly used to gather data as it is
the ​lowest latency​ flow-based tracer. This data is then post-processed to visualize it.

9. Multicore architectures

(Multiprocessor systems and the effects of cache coherency. Multithreaded programming requires
the idea of shared data in the presence of multicore systems.)

Introduction
Multiprocessing
Cache Coherence
Flynn’s Taxonomy of Computers
Why Parallel Computers?
Types of Parallelism and How to Exploit Them
Task-Level Parallelism: Creating Tasks

Multiprocessing Fundamentals
Multiprocessor Types
Main Issues in Tightly-Coupled MP
Hardware-based Multithreading
Parallel Speedup Example
Speedup with N Processors
Revisiting the Single-Processor Algorithm
Superlinear Speedup
Utilization, Redundancy, Efficiency
Utilization of a Multiprocessor
Caveats of Parallelism
Amdahl’s Law
Sequential Bottleneck
Why the Sequential Bottleneck?
Bottlenecks in Parallel Portion

Cache Coherence
Introduction

Multi-Core Cache Coherence
Memory Ordering in Multiprocessors
Ordering of Operations
Memory Ordering in a Single Processor
Memory Ordering in a Dataflow Processor
Memory Ordering in a MIMD Processor

Why Does This Even Matter?
Protecting Shared Data
Supporting Mutual Exclusion
Sequential Consistency
Programmer’s Abstraction
Issues with Sequential Consistency?
Weaker Memory Consistency
Tradeoffs: Weaker Consistency

Cache Coherence
Shared Memory Model
The Cache Coherence Problem
Hardware Cache Coherence
Two Cache Coherence Methods
Snoopy Cache Coherence

MESI
Tools: ​Measure the effects of cache coherency with tools like ​perf, Solaris Analyzer​,

and ​overseer​ e.t.c.

10. Tools
Tools:​EBPF
(One of the best tool for customizing tracing of kernel code. This gives Linux tracing

superpowers beyond even Solaris.)
Tools:​Ftrace
(The best (least overhead) software flow-based tracer for Linux. It is a part of Linux

Kernel and its official tracer.)
Tools:​Perf
(One of the best event-based profilers in the business.)
Tools:​Solaris Analyzer
Tools:​Overseer
Tools:​pcm-master
Tools:​Core-freq

 Tools:​Powertop
Tools:​Turbostat

11. Distributed Computing

(In this section we change the approach a bit. We take an open-source, high performance messaging
framework and dissect it. We see an industry-standard implementation of the majority of the concepts below,
including queuing theory, event-based architecture, etc. On one hand, we explore the adaptation of the
framework on Solarflare like hardware, and on the other hand, we explore making the framework reactive.)

Introduction
Hardware Networking stack
Software Networking stack

Modes of parallelism
Distributed Memory Models
Understanding the cost of Communication vs Computation
OpenMP, MPI overview

 Scheduling considerations for distributed computing
Intro to Queueing Theory
Latency vs Throughput
Scheduling to meet SLAs
Fault-Tolerant execution

Approaches to distributed computing
Message Passing
Event-driven approach to grid computing

