
Java Concurrency and Performance
 TRAINING

contents
☛ Description
☛ Intended Audience
☛ Key Skills
☛ Prerequisites
☛ Instructional Method
☛ course contents

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

Java Concurrency and Performance
 TRAINING

course contents
☛ Producer Consumer(Basic Hand-Off) Day1
☛ Common Issues with thread
☛ Java Memory Model(JMM)
☛ Applied Threading techniques
☛ Building Blocks for Highly Concurrent
Design
☛ Highly Concurrent Data Structures-Part1
☛ Designing For Concurrency
☛ Sharing Objects Day2
☛ Composing Objects
☛ Canned Synchronizers
☛ Structuring Concurrent Applications
☛ Cancellation and Shutdown
☛ Applying Thread Pools
☛ Liveness, Performance, and Testing
☛ Performance and Scalability Day3
☛ Explicit Locks
☛ Building Custom Synchronizers
☛ Atomic Variables and Nonblocking
Synchronization
☛ Crash course in Mordern hardware
☛ Designing for multi-core/processor
environment
☛ Highly Concurrent Data Structures-Part2
☛ CompletableFuture

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

■

■

■

■

■

■

■

■

Description:

With the advent of multi-core processors the usage of single threaded programs is

soon becoming obsolete.Java was built to be able to do many things at once. In

computer lingo, we call this "concurrency". This is the main reason why Java is so

useful. Today we see a lot of our applications running on multiple cores, concurrent

java programs with multiple threads is the answer for effective performance and

stability on multi-core based applications. Concurrency is among the utmost worries

for newcomers to Java programming but there's no reason to let it deter you. Not only

is excellent documentation available but also pictorial representations of each topic

to make understanding much graceful and enhanced. Java threads have become

easier to work with as the Java platform has evolved. In order to learn how to do

multithreaded programming in Java 6 and 7, you need some building blocks. Our

training expert with his rich training and consulting experience illustrates with real

application based case studies.

Intended Audience:

The target group is programmers who want to know foundations of concurrent

programming and existing concurrent programming environments, in order, now or

in future, to develop multithreaded applications for multi-core processors and shared

memory multiprocessors.

Key Skills:

Dealing with threads and collections on a multi-core/ multiprocessor.

To quickly identify the root cause of poor performance in your applications.

Eliminate conditions that will prevent you from finding performance bottlenecks.

JDK 5, 6, 7 which have features to harness the power of the underlying hardware.

Prerequisites:

Basic knowledge of Java (introductory course or equivalent practical experience).

Cursory Knowledge of Computer Hardware

Cursory Knowledge of IO

Instructional Method:

This is an instructor led course provides lecture topics and the practical application of

JEE5.0 and the underlying technologies. It pictorially presents most concepts and

there is a detailed case study that strings together the technologies, patterns and

design.

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

•

■

•

•

•

•

•

•

■

•

•

•

Java Concurrency and Performance
Producer Consumer(Basic Hand-Off)

Why wait-notify require Synchronization
notifyAll used as work around

Structural modification to hidden queue by wait-notify

locking handling done by OS

use cases for notify-notifyAll

Hidden queue

design issues with synchronization

Common Issues with thread
Uncaught Exception Handler

problem with stop

Dealing with InterruptedStatus

Java Memory Model(JMM)
Sequential Consistency would disallow common optimizations

Volatile

Real Meaning and effect of synchronization

The changes in JMM

Final

Shortcomings of the original JMM
Finals not really final

Prevents effective compiler optimizations

Processor executes operations out of order

Compiler is free to reorder certain instructions

Cache reorders writes

Old JMM surprising and confusing

New JMM and goals of JSR-133
Simple,intuitive and, feasible

Out-of-thin-air safety

High performance JVM implementations across architectures

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

■

•

•

•

•

■

■

•

•

■

•

•

•

•

■

•

•

•

■

•

•

■

•

■

•

•

•

•

Minimal impact on existing code

Initialization safety

Preserve existing safety guarantees and type-safety

Applied Threading techniques
Safe Construction techniques

Thread Local Storage

Thread safety levels

UnSafe Construction techniques

Building Blocks for Highly Concurrent Design

Reentrant Lock
ReentrantReadWriteLock

ReentrantLock

CAS
Wait-free Queue implementation

Optimistic Design

Wait-free Stack implementation

Hardware based locking

ABA problem
Markable reference

weakCompareAndSet

Stamped reference

Lock Striping
Lock Striping on LinkNodes

Lock Striping on table

Indentifying scalability bottlenecks in java.util.Collection
segregating them based on Thread safety levels

Lock Implementation
Multiple user conditions and wait queues

Lock Polling techniques

Based on CAS

Design issues with synchronization

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

■

•

•

•

•

•

■

•

•

•

•

•

•

■

■

•

•

•

•

■

•

•

•

•

•

•

•

•

■

Highly Concurrent Data Structures-Part1

Weakly Consistent Iterators vs Fail Fast Iterators

ConcurrentHashMap
Structure

remove/put/resize lock

Almost immutability

Using volatile to detect interference

Read does not block in common code path

Designing For Concurrency
Atomicity

Immutability

Confinement

Visibility

Almost Immutability

Restructuring and refactoring

Sharing Objects

Thread confinement
Stack confinement

ThreadLocal

Unshared objects are safe

Ad-hoc thread confinement

Visibility
Synchronization and visibility

Non-atomic 64-bit numeric operations

Problems that state data can cause

Volatile vs synchronized

Single-threaded write safety

Volatile flushing

Making fields visible with volatile

Reason why changes are not visible

Immutability

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

■

•

•

•

•

■

•

•

•

•

•

■

■

•

•

•

•

•

•

■

•

•

•

•

•

•

■

Definition of immutable

Immutable is always thread safe

Immutable containing mutable object

Final fields

Safe publication
Making objects and their state visible

Safe publication idioms

How to share objects safely

"Effectively" immutable objects

Publication and escape
Publishing objects to alien methods

Publishing objects as method returns

Implicit links to outer class

Ways we might let object escape

Publishing objects via fields

Composing Objects

Delegating thread safety
Independent fields

Publishing underlying fields

Delegating safety to ConcurrentMap

Invariables and delegation

Using thread safe components

Delegation with vehicle tracker

Designing a thread-safe class
Pre-condition

Thread-safe counter with invariant

Primitive vs object fields

Encapsulation

Post-conditions

Waiting for pre-condition to become true

Instance confinement

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

■

■

•

•

•

•

•

•

•

•

•

•

•

•

■

•

Split locks

Example of fleet management

Java monitor pattern

Lock confinement

Encapsulation

How instance confinement is good

State guarded by private fields

Canned Synchronizers
Semaphore

Latches

SynchronousQueue

Future

Exchanger

Synchronous Queue Framework

Mutex

Barrier

Structuring Concurrent Applications

The Executor framework
Memory leaks with ThreadLocal

Delayed and periodic tasks

Thread pool structure

Motivation for using Executor

Executor lifecycle, state machine

Difference between java.util.Timer and ScheduledExecutor

ThreadPoolExecutor

Decoupling task submission from execution

Shutdown() vs ShutdownNow()

Executor interface

Thread pool benefits

Standard ExecutorService configurations

Execution policies
Various sizing options for number of threads and queue length

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

■

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

■

■

•

•

•

•

•

•

•

■

•

•

•

In which order? (FIFO, LIFO, by priority)

Who will execute it?

Finding exploitable parallelism
Callable controlling lifecycle

CompletionService

Limitations of parallelizing heterogeneous tasks

Callable and Future

Time limited tasks

Example showing page renderer with future

Sequential vs parallel

Breaking up a single client request

Executing tasks in threads
Disadvantage of unbounded thread creation

Single-threaded vs multi-threaded

Explicitely creating tasks

Indepence of tasks

Identifying tasks

Task boundaries

Cancellation and Shutdown

Stopping a thread-based service
Graceful shutdown

ExecutorService shutdown

Providing lifecycle methods

Asynchronous logging caveats

Example: A logging service

Poison pills

One-shot execution service

Task cancellation
Cancellation policies

Using flags to signal cancellation

Reasons for wanting to cancel a task

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

•

•

•

•

•

•

■

•

•

■

•

•

•

•

■

•

•

•

■

•

•

■

•

•

•

■

•

•

•

Cooperative vs preemptive cancellation

Interruption
Origins of interruptions

WAITING state of thread

How does interrupt work?

Methods that put thread in WAITING state

Policies in dealing with InterruptedException

Thread.interrupted() method

Dealing with non-interruptible blocking
Interrupting locks

Reactions of IO libraries to interrupts

Responding to interruption
Letting the method throw the exception

Saving the interrupt for later

Ignoring the interrupt status

Restoring the interrupt and exiting

Interruption policies
Task vs Thread

Different meanings of interrupt

Preserving the interrupt status

Example: timed run
Telling a long run to eventually give up

Canceling busy jobs

Handling abnormal thread termination
Using UncaughtExceptionHandler

Dealing with exceptions in Swing

ThreadGroup for uncaught exceptions

JVM shutdown
Shutdown hooks

Orderly shutdown

Daemon threads

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

■

■

•

•

•

•

•

•

•

•

■

•

•

•

•

■

•

•

•

•

•

•

•

■

•

•

•

■

Finalizers

Abrupt shutdown

Applying Thread Pools

Configuring ThreadPoolExecutor
Thread factories

corePoolSize

Customizing thread pool executor after construction

Using default Executors.new* methods

Managing queued tasks

maximumPoolSize

keepAliveTime

PriorityBlockingQueue

Saturation policies
Discard

Caller runs

Abort

Discard oldest

Sizing thread pools
Examples of various pool sizes

Determining the maximum allowed threads on your operating

system

CPU-intensiv vs IO-intensive task sizing

Danger of hardcoding worker number

Problems when pool is too large or small

Formula for calculating how many threads to use

Mixing different types of tasks

Tasks and Execution Policies
Long-running tasks

Homogenous, independent and thread-agnostic tasks

Thread starvation deadlock

Extending ThreadPoolExecutor

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

■

•

•

■

■

■

•

•

■

•

•

■

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

terminate

Using hooks for extension

afterExecute

beforeExecute

Parallelizing recursive algorithms
Using Fork/Join to execute tasks

Converting sequential tasks to parallel

Liveness, Performance, and Testing

Avoiding Liveness Hazards

Other liveness hazards
Poor responsiveness

Livelock

Starvation
ReadWriteLock in Java 5 vs Java 6

Detecting thread starvation

Avoiding and diagnosing deadlocks
Adding a sleep to cause deadlocks

"TryLock" with synchronized

Using open calls

Verifying thread deadlocks

Avoiding multiple locks

Timed lock attempts

Stopping deadlock victims

DeadlockArbitrator

Deadlock analysis with thread dumps

Unit testing for lock ordering deadlocks

Deadlock
Thread-starvation deadlocks

Discovering deadlocks

Checking whether locks are held

Resource deadlocks

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

■

•

■

■

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

The drinking philosophers

Lock-ordering deadlocks

Defining a global ordering

Resolving deadlocks

Causing a deadlock amongst philosophers

Deadlock between cooperating objects

Imposing a natural order

Dynamic lock order deadlocks

Defining order on dynamic locks

Open calls and alien methods
Example in Vector

Performance and Scalability

Reducing lock contention
How to monitor CPU utilization

Performance comparisons

ReadWriteLock

Using CopyOnWrite collections

Immutable objects

Atomic fields

Using ConcurrentHashMap

Narrowing lock scope

Avoiding "hot fields"

Hotspot options for lock performance

Reasons why CPUs might not be loaded

How to find "hot locks"

Lock splitting

Dangers of object pooling

Safety first!

Reducing lock granularity

Exclusive locks

Lock striping
In ConcurrentHashMap

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

•

•

•

•

•

•

■

■

•

•

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

■

•

•

•

In ConcurrentLinkedQueue

Thinking about performance
Mistakes in traditional performance optimizations

2-tier vs multi-tier

Evaluating performance tradeoffs

Performance vs scalability

Effects of serial sections and locking

How fast vs how much

 Explicit Locks

 Lock and ReentrantLock
Using try-finally

Memory visibility semantics

Using try-lock to avoid deadlocks

tryLock and timed locks

Interruptible locking

Non-block-structured locking

ReentrantLock implementation

Using the explicit lock

Synchronized vs ReentrantLock
Memory semantics

Prefer synchronized

Ease of use

Performance considerations
Heavily contended locks

Java 5 vs Java 6 performance

Throughput on contended locks

Uncontended performance

Fairness
Standard non-fair mechanisms

Throughput of fair locks

Round-robin by OS

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

■

•

•

■

•

•

•

•

•

■

■

•

•

•

•

•

■

•

■

•

•

•

■

•

■

•

•

•

•

Barging

Fair explicit locks in Java

Read-write locks
ReadWriteLock interface

Understanding system to avoid starvation

ReadWriteLock implementation options
Release preference

Downgrading

Reader barging

Upgrading

Reentrancy

Building Custom Synchronizers

Managing state dependence
Exceptions on pre-condition fails

Structure of blocking state-dependent actions

Crude blocking by polling and sleeping

Example using bounded queues

Single-threaded vs multi-threaded

Introducing condition queues
With intrinsic locks

Explicit condition objects
Condition interface

Timed conditions

Benefits of explicit condition queues

AbstractQueuedSynchronizer (AQS)
Basis for other synchronizers

Using condition queues
Waking up too soon

Conditional waits

Condition queue

Encapsulating condition queues

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

■

•

■

■

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

■

•

•

•

State-dependence

notify() vs notifyAll()

Condition predicate

Lock

Waiting for a specific timeout

Missed signals
InterruptedException

Atomic Variables and Nonblocking Synchronization

Hardware support for concurrency
Using "Unsafe" to access memory directly

CAS support in the JVM

Compare-and-Set

Performance advantage of padding

Nonblocking counter

Simulation of CAS

Managing conflicts with CAS

Compare-and-Swap (CAS)

Shared cache lines

Optimistic locking

Atomic variable classes
Optimistic locking classes

How do atomics work?

Atomic array classes

Performance comparisons: Locks vs atomics

Cost of atomic spin loops

Very fast when not too much contention

Types of atomic classes

Disadvantages of locking
Priority inversion

Elimination of uncontended intrinsic locks

Volatile vs locking performance

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

•

•

■

•

•

■

•

■

•

•

•

•

•

■

•

•

■

•

•

•

■

•

•

•

Nonblocking algorithms
Scalability problems with lock-based algorithms

Atomic field updaters

Doing speculative work

AtomicStampedReference

Nonblocking stack

Definition of nonblocking and lock-free

Highly scalable hash table

The ABA problem

Using sun.misc.Unsafe
Dangers

Reasons why we need it

Crash course in Mordern hardware
Amdahl's Law

Cache
cache controller

write

Direct mapped

read

Address mapping in cache

Memory Architectures
NUMA

UMA

Designing for multi-core/processor environment
Concurrent Stack

Harsh Realities of parallelism

Parallel Programming

Concurrent Objects
Sequential Consistency

Linearizability

Concurrency and Correctness

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

■

•

•

•

•

■

•

•

•

•

■

•

•

•

•

•

■

■

•

■

•

•

•

■

•

•

•

■

•

Progress Conditions

Quiescent Consistency

Concurrency Patterns
Lazy Synchronization

Lock free Synchronization

Optimistic Synchronization

Fine grained Synchronization

Priority Queues
Heap Based Unbounded Priority Queue

Skiplist based Unbounded priority Queue

Array Based bounded Priority Queue

Tree based Bounded Priority Queue

Lists
Coarse Grained Synchronization

Lazy Synchronization

Optimistic Synchronization

Non Blocking Synchronization

Fine Grained Synchronization

Skiplists

Spinlocks
Lock suitable for NUMA systems

Concurrent Queues
Unbounded lock-free Queue

Bounded Partial Queue

Unbounded Total Queue

Concurrent Hashing
Open Address Hashing

Closed Address Hashing

Lock Free Hashing

Highly Concurrent Data Structures-Part2
CopyOnWriteArray(List/Set)

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

■

■

•

■

■

■

•

•

•

•

•

■

•

■

•

•

•

•

•

■

•

•

•

■

•

•

Queue interfaces
Queue

BlockingQueue

Deque

BlockingDeque

Queue Implementations

ArrayDeque and ArrayBlockingDeque
WorkStealing using Deques

LinkedBlockingQueue

LinkedBlockingDeque

ConcurrentLinkedQueue
GC unlinking

Michael and Scott algorithm

Tails and heads are allowed to lag

Support for interior removals

Relaxed writes

ConcurrentLinkedDeque
Same as ConcurrentLinkedQueue except bidirectional pointers

LinkedTransferQueue
Internal removes handled differently

Heuristics based spinning/blocking on number of processors

Behavior differs based on method calls

Usual ConcurrentLinkedQueue optimizations

Normal and Dual Queue

Skiplist
Lock free Skiplist

Sequential Skiplist

Lock based Concurrent Skiplist

ConcurrentSkipListMap(and Set)
Indexes are allowed to race

Iteration
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

•

Problems with AtomicMarkableReference

Probabilistic Data Structure

Marking and nulling

Different Way to mark

CompletableFuture
Limitations of Future

Run a task asynchronously and return the result using supplyAsync()

Future vs CompletableFuture

Running Multiple Futures in Parallel

Using CompletableFuture as a Simple Future

CompletableFuture with Encapsulated Computation Logic

Combining Futures

What’s a CompletableFuture?

Asynchronous Computation in Java

Handling Errors

Running asynchronous computation using runAsync()

Difference Between thenApply() and thenCompose()

Processing Results of Asynchronous Computations

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

	contents
	course contents
	Description
	Intended Audience
	Key Skills
	Prerequisites
	Instructional Method
	Java Concurrency and Performance
	Producer Consumer(Basic Hand-Off)
	Why wait-notify require Synchronization

	Common Issues with thread
	Java Memory Model(JMM)
	Shortcomings of the original JMM
	New JMM and goals of JSR-133

	Applied Threading techniques
	Building Blocks for Highly Concurrent Design
	Reentrant Lock
	CAS
	ABA problem

	Lock Striping
	Indentifying scalability bottlenecks in java.util.Collection
	Lock Implementation

	Highly Concurrent Data Structures-Part1
	Weakly Consistent Iterators vs Fail Fast Iterators
	ConcurrentHashMap

	Designing For Concurrency
	Sharing Objects
	Thread confinement
	Visibility
	Immutability
	Safe publication
	Publication and escape

	Composing Objects
	Delegating thread safety
	Designing a thread-safe class
	Instance confinement

	Canned Synchronizers
	Structuring Concurrent Applications
	The Executor framework
	Execution policies

	Finding exploitable parallelism
	Executing tasks in threads

	Cancellation and Shutdown
	Stopping a thread-based service
	Task cancellation
	Interruption
	Dealing with non-interruptible blocking
	Responding to interruption
	Interruption policies
	Example: timed run

	Handling abnormal thread termination
	JVM shutdown

	Applying Thread Pools
	Configuring ThreadPoolExecutor
	Saturation policies

	Sizing thread pools
	Tasks and Execution Policies
	Extending ThreadPoolExecutor
	Parallelizing recursive algorithms

	Liveness, Performance, and Testing
	Avoiding Liveness Hazards
	Other liveness hazards
	Starvation

	Avoiding and diagnosing deadlocks
	Deadlock
	Open calls and alien methods

	Performance and Scalability
	Reducing lock contention
	Lock striping

	Thinking about performance

	 Explicit Locks
	 Lock and ReentrantLock
	Synchronized vs ReentrantLock
	Performance considerations
	Fairness
	Read-write locks
	ReadWriteLock implementation options

	Building Custom Synchronizers
	Managing state dependence
	Introducing condition queues

	Explicit condition objects
	AbstractQueuedSynchronizer (AQS)
	Using condition queues
	Missed signals

	Atomic Variables and Nonblocking Synchronization
	Hardware support for concurrency
	Atomic variable classes
	Disadvantages of locking
	Nonblocking algorithms
	Using sun.misc.Unsafe

	Crash course in Mordern hardware
	Cache
	Memory Architectures

	Designing for multi-core/processor environment
	Concurrent Objects
	Concurrency Patterns
	Priority Queues
	Lists
	Skiplists
	Spinlocks
	Concurrent Queues
	Concurrent Hashing

	Highly Concurrent Data Structures-Part2
	Queue interfaces
	Queue Implementations
	ArrayDeque and ArrayBlockingDeque
	LinkedBlockingQueue
	LinkedBlockingDeque
	ConcurrentLinkedQueue
	ConcurrentLinkedDeque
	LinkedTransferQueue

	Skiplist
	ConcurrentSkipListMap(and Set)

	CompletableFuture

