
JVM Performance Tuning
 TRAINING

contents
☛ Description
☛ Intended Audience
☛ Key Skills
☛ Prerequisites
☛ Instructional Method
☛ course contents

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

JVM Performance Tuning
 TRAINING

course contents
☛ Hardware Day1
☛ Operating System Day2
☛ Java Virtual Machine
☛ Java Language Tuning Day3

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Description:

 Focus of the training is to make JVM and Java performance tuning clear and simple

as possible for the participants at the design, architecture and, implementation levels.

This is an end-to-end training. The Training illustrates almost every concept with the

help of pictures because it is much easier to understand the concept pictorially and

model code. There are a lot of illustrations in the course of the training. There are

worked out examples to illustrate the concepts for almost every topic. There is a

detailed case study that strings together all concepts and technology. There are case

studies for debugging JVM Crashes, Memory Leaks, Operating System stalls , and

Hardware Bottlenecks. We learn how to associate these events with code.

Intended Audience:

The target group is programmers who want to know foundations of concurrent

programming and existing concurrent programming environments, in order, now or

in future, to develop multithreaded applications for multi-core processors and shared

memory multiprocessors.

Java Consultants, developers or anyone with Java experience interested in

performance testing.

Key Skills:

Identify and debug memory leak

Case studies of various real problems

Identify and debug Operating System Stalls

Identify and debug Hardware stalls

Debug JVM Crash

Using various hardware, OS,JVM tools and their usage

Prerequisites:

Good Knowledge of Java.

Workstation with JDK 1.8.0 installed

Working knowledge of JVM

Workstation with JDK 1.7.0 installed

Instructional Method:

Some topics(e.g. memory analysis) are listed is more than one heading(Hardware,

OS, JVM).

This is an instructor led course provides lecture topics and the practical application of

JVM tuning techniques and the underlying technologies.

It pictorially presents most concepts and there is a detailed case study that strings

together the technologies, patterns and design.

The reason for a problem may be Hardware, OS , JVM or Application. The technique
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

and tools for problem identification may be different.

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

■

•

•

•

•

•

JVM Performance Tuning
Hardware

Cache and Memory
Measure the effects of cache on a java program

Identifying bottlenecks with the help of these measurements

Keeping latency low and throughput high by engaging the cache

Measuring TLBs performance and its effects

Associating bottlenecks with java code.

How Hardware effects Performance of JAVA application?

Measure the effects of other processor and hardware Counters on a

java program

Hardware counters that can be measured

Hardware and software Prefetchers

TLBs effect on java code.

Crash Course in modern hardware

How cache effects performance?

TLBs architecture

Cache Levels and their architecture

Disk
How to measure tardy disk?

Identifying with correct reason

Is your disk IO slow?

Reasons for tardy performance.

Associating the tardy performance with java code

Locking and Concurrency
Cache Coherency

MESI

False Sharing

Associating False Sharing with Java Code

Detecting False Sharing

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

■

•

•

•

■

■

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

Processor Affinity
Effects of processor affinity

Measuring effects of affinity

CPU
Measuring CPI and IPC

CPU Performance Counters

Associating and CPI and IPC with performance and java code

Operating System

Locking and Concurrency
is_lock_owned

try_spin

Object layout with JOL

spin_pause

Undestanding Padding

False Sharing

Designing Classes to avoid false share

@Contended and related annotation

complete_monitor_locking

Virtual Memory
Page Replacement

Caveats of using TLB

Introduction

How physical memory acts

Swap Space

Pages and page frames

Multilevel page tables

How the operating system sees memory

Optimizing Page table access

How virtual memory acts

Virtual memory and shared memory

Demand Paged Virtual Memory and Working Sets

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

•

•

•

•

•

•

•

■

•

•

■

•

•

•

•

•

•

•

■

■

■

■

•

•

•

■

■

•

Influencing TLB performance

JVMTuning for VirtualMemory
-XX:_UseLargePages

/sys/kernel/mm/transparent_hugepages/enabled

/proc/sys/vm/nr_hugepages

/proc/meminfo Hugepagesize

Linux huge Pages

Linux Transparent huge pages

LargePages

Setting Processor Affinity at OS
what is taskset

isolcpus

Operating-System-Specific Tools
gdb

conky

vmstat

mpstat

iostat

system tap

top

Java Virtual Machine

Memory Analysis

Core/Heap dumps Analyzer

jdb Utility
Attaching to a Process

Attaching to a Core File on the Same Machine

Attaching to a Core File or a Hung Process from a Different

Machine

JConsole Utility

HPROF - Heap Profiler
CPU Usage Sampling Profiles (cpu=samples)

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

■

■

•

•

•

•

•

•

•

•

■

■

•

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

CPU Usage Times Profile (cpu=times)

Heap Dump (heap=dump)

Heap Allocation Profiles (heap=sites)

Java VisualVM

Serviceability Agent(SA)
Cache Dump

Stepping Through heap

Class Browser

Compute reverse pointers

Stepping through NON Heap

Deadlock detection

Value in code cache

Code Viewer

CPU Usage Profilers

Solaris Studio Analyzer (Linux and Solaris)
stepping through assembly with source

er_print utility

stepping through call-stack (native and java)

stepping through byte codes with source

Associating hardware events with java code analyzer

Collecting processor specific hardware events

Collect command

Java Mission Control
Enabling JFR

Selecting JFR Events

Java Flight recorder

Garbage Collection and Memory Architecture
Heap Fragmentation

GC Pros and Cons

Object Size

Algorithms

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

■

•

•

•

•

■

■

•

•

•

•

•

■

•

•

•

•

•

•

■

■

•

•

•

Overview

Performance

GC Tasks

Reachability

Managing OutOfMemoryError

Generational Spaces

Measuring GC Activity

History
Summary

Old Space

Young Space

JVM 1.4, 5, 6

Diagnostics and Analysis

Native Memory Best Practices
Measuring Footprint

NIO Buffers

Minimizing Footprint

Native Memory Tracking

FootPrint

Integrating Signal and Exception Handling
Reducing Signal Usage

Console Handlers

Signal Chaining

Signal Handling on Solaris OS and Linux

Alternative Signals

Signal Handling in the HotSpot Virtual Machine

Reasons for Not Getting a Core File

Diagnosing Leaks in Native Code
Crash in Compiled Code

Tracking Memory Allocation With OS Support

Using libumem to Find Leaks

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

•

Tracking Memory Allocation in a JNI Library

Tracking All Memory Allocation and Free Calls

Sample Crashes

Crash in Native Code

Crash in VMThread

Determining Where the Crash Occurred

Crash due to Stack Overflow

Using dbx to Find Leaks

Crash in the HotSpot Compiler Thread

Troubleshooting System Crashes

Diagnosing Leaks in Java Language Code
Obtaining a Heap Histogram on a Running Process

-XX:+HeapDumpOnOutOfMemoryError Command-line

Option

jmap Utility

Using the jhat Utility

JConsole Utility

 Monitoring the Number of Objects Pending Finalization

Obtaining a Heap Histogram at OutOfMemoryError

 HPROF Profiler

NetBeans Profiler

Creating a Heap Dump

Developing Diagnostic Tools
Java Platform Debugger Architecture

java.lang.management Package

Java Virtual Machine Tools Interface

Troubleshooting Hanging or Looping Processes
Diagnosing a Looping Process

Deadlock Detected

No Thread Dump

Deadlock Not Detected

Diagnosing a Hung Process
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

•

•

•

•

•

•

•

■

•

•

•

■

■

•

•

•

■

■

•

•

•

•

■

•

•

•

•

•

Forcing a Crash Dump

Troubleshooting Memory Leaks
Crash Instead of OutOfMemoryError

Meaning of OutOfMemoryError

Detail Message: <reason> <stack trace> (Native method)

Detail Message: Java heap space

Detail Message: request <size> bytes for <reason> Out of swap

space?

Detail Message: PermGen space

Detail Message: Requested array size exceeds VM limit

 Finding a Workaround
Crash During Garbage Collection

Class Data Sharing

Crash in HotSpot Compiler Thread or Compiled Code

Garbage Collection-Advanced Tuning Scenarios

Advance Tuning Scenarios-Part2
JDK 5,6,7 defaults

Default Flags

Garbage Collection Data of Interest

Tuning GC For Throughput and Latency

Latency
Old(Parallel)

Perm

Young (Parallel)

Pset Configuration

Old(CMS)
Tenuring Distribution

Initiating Occupancy

Common Scenarios

Survivor Ratio

Tenuring threshold

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

•

■

•

■

•

•

•

•

•

•

■

•

•

■

•

•

•

■

•

•

•

•

■

•

Througput
(Parallel GC)

CondCardmark

Adaptive Sizing

Tlabs

Large Pages

Numa

Pset Configuration

CMS
Concurrent Mode Failure

Monitoring GC
Par New

Parallel GC

Safe Pointing

Time Stamps

Date Stamps

System.GC

Advance Tuning Scenarios-Part1
Monitoring the GC

Conclusions

GC Tuning
Tuning Parallel GC

Tuning CMS

Tuning the young generation

GC Tuning Methodology
Deployment Model

Choosing Runtime

General GuideLines

Data Model

Heap Sizing
Factor Controlling Heap Sizing

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

•

•

•

•

•

■

•

•

•

•

•

•

•

■

•

■

•

•

■

•

•

•

•

■

•

•

•

■

•

Advanced JVM Architecture

Tuning inlining
MaxInlineSize

InlineSmallCode

MaxInline

MaxRecursiveInline

FreqInlineSize

Monitoring JIT
Deoptimizations

Backing Off

PrintCompilation

OSR

Log Compilations

Optimizations

PrintInlining

Intrinsics
Common intrinsics

Understanding and Controlling JVM Options
DoEscapeAnalysis

AggressiveOpts

CallSites
Polymorphic

BiMorphic

MegaMorphic

MonoMorphic

HotSpot
Client

Server

Tiered

Advanced JVM Architecture Part 1
NUMA

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

■

■

•

•

•

•

•

•

•

Inline caching

Virtual method calls Details

Virtual Machine Design

Dynamic Compilation

Large Pages

Biased Locking

Lock Coarsening

Standard Compiler Optimizations

Speculative Optimizations

Escape Analysis

Scalar Replacements

Inlining Details

VM Philosophy

Advanced JVM Architecture-Part 2
JIT

Mixed mode

Golden Rule

Profiling

Optimizations

Java Language Tuning

Class-loading
Common Class loading Issues

Changing the rules of default class visibility

Class Loading Basics

Introduction

Diagnosing and resolving class loading problems

Custom Class Loaders

Class visibility

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

	contents
	course contents
	Description
	Intended Audience
	Key Skills
	Prerequisites
	Instructional Method
	JVM Performance Tuning
	Hardware
	Cache and Memory
	Disk
	Locking and Concurrency
	Processor Affinity
	CPU

	Operating System
	Locking and Concurrency
	Virtual Memory
	JVMTuning for VirtualMemory

	Setting Processor Affinity at OS
	Operating-System-Specific Tools

	Java Virtual Machine
	Memory Analysis
	Core/Heap dumps Analyzer
	jdb Utility
	JConsole Utility
	HPROF - Heap Profiler
	Java VisualVM
	Serviceability Agent(SA)

	CPU Usage Profilers
	Solaris Studio Analyzer (Linux and Solaris)
	Java Mission Control

	Garbage Collection and Memory Architecture
	History

	Diagnostics and Analysis
	Native Memory Best Practices
	Integrating Signal and Exception Handling
	Reasons for Not Getting a Core File
	Diagnosing Leaks in Native Code
	Diagnosing Leaks in Java Language Code
	Developing Diagnostic Tools
	Troubleshooting Hanging or Looping Processes
	Forcing a Crash Dump
	Troubleshooting Memory Leaks
	 Finding a Workaround

	Garbage Collection-Advanced Tuning Scenarios
	Advance Tuning Scenarios-Part2
	Tuning GC For Throughput and Latency
	Latency
	Old(CMS)

	Througput

	CMS
	Monitoring GC

	Advance Tuning Scenarios-Part1
	GC Tuning
	GC Tuning Methodology
	Heap Sizing

	Advanced JVM Architecture
	Tuning inlining
	Monitoring JIT
	Intrinsics

	Understanding and Controlling JVM Options
	CallSites
	HotSpot

	Advanced JVM Architecture Part 1
	Advanced JVM Architecture-Part 2

	Java Language Tuning
	Class-loading

